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Let X1, . . . , Xn be i.i.d. copies of a random variable X = Y + Z, where Xi = Yi + Zi, and Yi and Zi are
independent and have the same distribution as Y and Z, respectively. Assume that the random variables
Yi ’s are unobservable and that Y = AV, where A and V are independent, A has a Bernoulli distribution
with probability of success equal to 1 − p and V has a distribution function F with density f. Let the
random variable Z have a known distribution with density k. Based on a sample X1, . . . , Xn, we consider
the problem of nonparametric estimation of the density f and the probability p. Our estimators of f and p

are constructed via Fourier inversion and kernel smoothing. We derive their convergence rates over suitable
functional classes. By establishing in a number of cases the lower bounds for estimation of f and p we
show that our estimators are rate-optimal in these cases.

Keywords: atomic distribution; deconvolution; Fourier inversion; kernel smoothing; mean square error;
mean integrated square error; optimal convergence rate
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1. Introduction

Let X1, . . . , Xn be i.i.d. copies of a random variable X = Y + Z, where Xi = Yi + Zi, and Yi

and Zi are independent and have the same distribution as Y and Z, respectively. Assume that the
random variables Yi’s are unobservable and that Y = AV, where A and V are independent, A has a
Bernoulli distribution with a probability of success equal to 1 − p and V has a distribution function
F with density f. Furthermore, let the random variable Z have a known distribution with density
k. Based on a sample X1, . . . , Xn, we consider the problem of nonparametric estimation of the
density f and the probability p. This problem has recently been introduced in van Es, Gugushvili,
and Spreij (2008) for the case when Z is normally distributed and Lee, Shen, Burch, and Marron
(2010) for the class of more general error distributions. It is referred to as a deconvolution for
an atomic distribution, which reflects the fact that the distribution of Y has an atom of size p

at zero and that we have to reconstruct (‘deconvolve’) p and f from the observations from the
convolution structure X = Y + Z. When p is known to be equal to zero, i.e. when Y has a density,
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the problem reduces to the classical and much studied deconvolution problem, see e.g. Meister
(2009) for an introduction to the latter and many recent references.

The above problem arises in a number of practical situations. For instance, suppose that a
measurement device is used to measure some quantity of interest. Let it have a probability of
failure to detect this quantity equal to p, in which case it renders zero. Repetitive measurements
of the quantity of interest can be modelled by random variables Yi defined as above. Assume
that our goal is to estimate the density f and the probability of failure p. If we could use the
measurements Yi directly, then when estimating f, zero measurements could be discarded and
we could use the nonzero observations to base our estimator of f on. The probability p could be
estimated by the proportion of zero observations. However, in practice, it is often the case that
some measurement error is present. This can be modelled by random variables Zi and assuming
the additive measurement error structure, in such a case the observations are Xi = Yi + Zi. Now
note that due to the measurement error, the zero Yi’s cannot be distinguished from the non-zero
Yi’s. If we do not want to impose parametric assumptions on f, then the use of nonparametric
deconvolution techniques will be unavoidable when estimating f.

Another example comes from evolutionary biology, see Section 4 in Lee et al. (2010): suppose
that a virus lineage is grown in a lab for a number of days in a manner that promotes accumulation
of mutations. Plaque size can be used as a measure of viral fitness. Assume that it is measured
every day and let the mutation effect on viral fitness be defined as a change in the plaque size. If a
high fitness virus is used, during any time interval in terms of mutations, then there are only two
possibilities: either (1) no mutation, or only silent mutation occurs, or (2) a deleterious mutation
occurs. Due to the fact that a silent mutation does not affect fitness, theoretically it will not change
the plaque size and hence the mutation effect is zero for the first case. Deleterious mutations, on
the other hand, will affect the plaque size. Since the distribution of deleterious mutation effects
is usually considered to be continuous, the distribution of mutation effects can be expressed as a
mixture of a point mass at zero, which corresponds to scenario (1), and a continuous distribution,
which corresponds to scenario (2). Presence of measurement errors (which can be assumed to
be additive) when measuring the plaque size leads precisely to the deconvolution problem for an
atomic distribution.

Deconvolution for an atomic distribution is also closely related to empirical Bayes estimation of
a mean of a high-dimensional normally distributed vector, see, e.g. Jiang and Zhang (2009) for the
description of the problem and many references. In more detail, let Xi ∼ N(θi, 1), i = 1, . . . , n be
i.i.d., where N(θi, 1) denotes the normal distribution with mean θi and variance 1, and suppose
that based on X1, . . . , Xn the goal is to estimate the mean vector θ = (θ1, . . . , θn). This has
applications, e.g. in denoising a noisy signal or image. It is often the case that the vector θ is sparse
in some sense in that many of θi’s are zero or close to zero. The notion of sparsity can naturally be
modelled in a Bayesian way by putting independent priors �i(dx) = p1[x=0] dx + (1 − p)F(dx)

on each component θi of θ, where 0 ≤ p < 1 and F is a continuous distribution function. Note
that excess of zeros among θi’s is matched by choosing the prior �i that has a point mass at zero.
In the empirical Bayes approach to estimation of θ the hyperparameters p and F of the priors �i

are estimated from the data X1, . . . , Xn. This leads precisely to the deconvolution problem for an
atomic distribution.

A related problem is estimation of the proportion of non-null effects in large-scale multiple
testing framework, see, e.g. Cai and Jin (2010). In large-scale multiple testing, one is interested
in simultaneous testing of a large number of hypotheses H1, . . . , Hn. Suppose that with every
hypothesis Hi there is associated a corresponding test statistic Xi.A popular framework for large-
scale multiple testing is the two-group random mixture model, where one assumes that each
hypothesis Hi has a certain unknown probability π of being true (the approach is empirical Bayes
in its essence) and the test statistics Xi are independent and are generated from a mixture of two
densities, Xi ∼ (1 − π)fnull + πfalt. Here π (the same for all i) is called the probability of null
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effects, fnull is the null density and falt is the non-null density. Often fnull is modelled as a density
of a normal distribution N(μ0, σ0), while the density falt is modelled as a Gaussian location-scale
mixture

falt(x) =
∫ ∞

−∞

∫ ∞

−∞
1

σ
ϕ

(
x − μ

σ

)
dG(μ, σ),

where ϕ is the standard normal density and G the mixing distribution which is assumed to be
unknown. Observe that π in this case plays a role similar to 1 − p in the deconvolution problem
for an atomic distribution. Estimation of the probability π and the mixing distribution G based
on X1, . . . , Xn leads to a problem strongly related to the deconvolution problem for an atomic
distribution.

After these motivating examples we return to the deconvolution problem for an atomic dis-
tribution and move to the construction of estimators of p and f (our notation is as in the first
paragraph of this section). Because of a great similarity of our problem to the classical decon-
volution problem, one natural approach to estimation of p and f is based on the use of Fourier
inversion and kernel smoothing, cf. Section 2.2.1 in Meister (2009). In the sequel, φξ will denote
the characteristic function of a random variable ξ. The Fourier transform of a function g will be
denoted by φg. Suppose that φZ(t) �= 0 for all t ∈ R. Following van Es et al. (2008), we define
an estimator pngn

of p as

pngn
= gn

2

∫ 1/gn

−1/gn

φemp(t)φu(gnt)

φZ(t)
dt, (1)

where a number gn > 0 denotes a bandwidth, φu is the Fourier transform of some fixed function (a
kernel)u chosen beforehand andφemp(t) = n−1∑n

j=1 eitXj is the empirical characteristic function.
To make the definition of pngn

meaningful, we assume that φu has support on [−1, 1]. This
guarantees integrability of the integrand in Equation (1). We also assume that φu is real-valued,
bounded, symmetric and integrates to two. Other conditions on u will be stated in the next
section. Note that pngn

is real-valued, because for its complex conjugate, we have pngn
= pngn

.

The heuristics behind the definition of pngn
are the same as in van Es et al. (2008): using φX(t) =

φY (t)φZ(t) and φY (t) = p + (1 − p)φf (t), we have

lim
gn→0

gn

2

∫ 1/gn

−1/gn

φX(t)φu(gnt)

φZ(t)
dt = lim

gn→0

gn

2

∫ 1/gn

−1/gn

φY (t)φu(gnt) dt

= lim
gn→0

gn

2

∫ 1/gn

−1/gn

pφu(gnt) dt

+ lim
gn→0

gn

2

∫ 1/gn

−1/gn

(1 − p)φf (t)φu(gnt) dt

= p,

provided φf (t) is integrable. The last equality follows from the dominated convergence theorem
and the fact that φu integrates to two. Note that this estimator coincides with the one in Lee
et al. (2010) when u is the sinc kernel, i.e. u(x) = sin(x)/(πx). The Fourier transform of this
kernel is given by φu(t) = 1[−1,1](t). In general pngn

might take on negative values, even though
for large n the probability of this event will be small. In any case this is of minor importance,
because we can always truncate pngn

from below at zero, i.e. we can define an estimator of p as
p+

ngn
= max(0, pngn

). This new estimator of p has risk (quantified by the mean square error) not
larger than that of pngn

:

E p,f [(p+
ngn

− p)2] ≤ E p,f [(pngn
− p)2].
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Remark 1 In order to keep our notation compact, in the sequel instead of writing the expectation
under the parameter pair (p, f ) as E p,f [·], we will simply write E [·].

Next we turn to the construction of an estimator of f. Let

p̂ngn
= max(−1 + εn, min(pngn

, 1 − εn)), (2)

where 0 < εn < 1 and εn ↓ 0 at a suitable rate to be specified later on. Note that |p̂ngn
| ≤ 1 − εn.

Truncating pngn
from below at −1 + εn and not at zero will make proofs of the asymptotic results

for an estimator of f somewhat shorter, although truncation at zero is still a valid option. As in
van Es et al. (2008), we propose the following estimator of f :

fnhngn
(x) = 1

2π

∫ ∞

−∞
e−itx φemp(t) − p̂ngn

φZ(t)

(1 − p̂ngn
)φZ(t)

φw(hnt) dt, (3)

where w is a kernel function with a real-valued and symmetric Fourier transform φw supported
on [−1, 1] and hn > 0 is a bandwidth. Note that fnhngn

(x) = fnhngn
(x) and hence fnhngn

(x) is
real-valued. It is clear that pngn

is truncated to p̂ngn
in order to control the factor (1 − p̂ngn

)−1 in
Equation (3). The definition of fnhngn

is motivated by the fact that

f (x) = 1

2π

∫ ∞

−∞
e−itx φX(t) − pφZ(t)

(1 − p)φZ(t)
dt,

cf. equation (1.2) in van Es et al. (2008). Thus, fnhngn
is obtained by replacing φX and p by

their estimators and application of appropriate regularisation determined by the kernel w and
bandwidth h. The estimator fnhngn

essentially coincides with the one in Lee et al. (2010) when
both u and w are taken to be the sinc kernels. Again, note that with a positive probability fnhngn

(x)

might become negative for some x ∈ R, a little drawback often shared by kernel-type density
estimators. Some correction method can be used to remedy this drawback, for instance, one can
define f +

nhngn
(x) = max(0, fnhngn

(x)), as this does not increase the pointwise risk of the estimator.
Note that this possible negativity of fnhngn

cannot be remedied only by truncating pngn
from below

at zero and then using this new estimator instead of p̂ngn
in Equation (3). Observe also that f +

nhngn

can be rescaled to integrate to one and thus can be turned into a probability density. An alternative
correction method to turn a possibly negative density estimator into a probability density is
described in Glad, Hjort, and Ushakov (2003). We do not pursue these questions any further.

In the present work, we assume that the distribution of Z is known. In practice, this is not
always the case. If the distribution of Z is totally unknown, then next to the sample X1, . . . , Xn

one typically will need some additional data in order to construct consistent estimators of f and
p. For instance, the case when additional measurements on Z, say Z1, . . . , Zm, are available in
the classical deconvolution problem with a priori known p = 0 is dealt with in Johannes (2009).
Furthermore, one can also consider the case when the distribution of Z is known up to a scale
parameter. The relevant papers in the classical deconvolution context are Butucea and Matias
(2005) and Meister (2006). Although conceivable in principle, extension of our results to these
cases is beyond the scope of the present work.

In the rest of the paper, we concentrate on asymptotics of the estimators pngn
and fnhngn

. In
particular, we derive upper bounds on the supremum of the mean square error of the estimator
pngn

and the supremum of the mean integrated square error of the estimator fnhngn
taken over an

appropriate class of the densities f and an appropriate interval for the probability p. Our results
complement those in van Es et al. (2008), where the asymptotic normality of the estimators pngn

and fnhngn
is established. However, the present results are also more general, as we consider more

general error distributions, and not necessarily the normal distribution as in van Es et al. (2008).
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Weak consistency of the estimators (1) and (3) based on the sinc kernel has been established
under wide conditions in Lee et al. (2010). Here, however, we also derive convergence rates,
much in the spirit of the classical deconvolution problems. Note also that the fixed parameter
asymptotics of the estimators of p and f were studied in Lee et al. (2010), in particular, the rate
of convergence of their estimator of f (but not of p) was derived. On the other hand, we prefer to
study asymptotics uniformly in p and f, since fixed parameter statements are difficult to interpret
from the asymptotic optimality point of view in nonparametric curve estimation, see, e.g. Brown,
Low, and Zhao (1997) for a discussion. Furthermore, in the case of estimation of f , we quantify
the risk globally in terms of the mean integrated squared error and not pointwise by the mean
squared error as done in Lee et al. (2010). We also derive a lowner risk bound for estimation of
f, which shows that our estimator is rate-optimal over an appropriate functional class. Our final
results are lower bounds for estimation of p. These lower bounds entail rate-optimality of pngn

in
a large class of examples.

The structure of the paper can be outlined as follows: in Section 2, we state the main results of
the paper. The proofs of these results are given in Section 3, while the Appendix contains several
technical lemmas used in Section 3.

2. Results

The classical deconvolution problems are usually divided into two groups, ordinary smooth decon-
volution problems and supersmooth deconvolution problems, see, e.g. Fan (1991) or Meister
(2009, p. 35). In the former case, it is assumed that the characteristic function φZ of a random
variable Z decays to zero algebraically at plus and minus infinity (an example of such a Z is a
random variable with Laplace distribution), while in the latter case the decay is essentially expo-
nential (for instance, Z can be a normally distributed random variable). The rate of decay of φZ

at infinity determines smoothness of the density of Z and hence the names ordinary smooth and
supersmooth. Here too we will adopt the distinction between ordinary smooth and supersmooth
deconvolution problems. The ordinary smooth deconvolution problems for an atomic distribution
will be defined by the following condition on φZ.

Condition 1 Let φZ(t) �= 0 for all t ∈ R and let

d0|t |−β ≤ |φZ(t)| as |t | −→ ∞, (4)

where d0 and β are some strictly positive constants. Furthermore, let φZ be integrable.

Remark 2 Note that the assumption of integrability of φZ puts certain restriction on the tail
behaviour of φZ and therefore implicitly on β too. In particular, in order that Condition 1 does not
lead to an empty assumption, we must have β > 1. Note that a lower bound on the rate of decay
of φZ as in Equation (4) is needed in order to derive upper risk bounds for the estimators pngn

and fnhngn
, cf. Fan (1991, p. 1260) and Meister (2009, p. 35). When deriving lower bounds for

estimation of p and f, Equation (4) has to be further refined by adding an explicit upper bound
on the rate of decay of φZ, see below.

For the supersmooth deconvolution problems for an atomic distribution we will need the
following condition on φZ.



1008 S. Gugushvili et al.

Condition 2 Let φZ(t) �= 0 for all t ∈ R and let

d0|t |β0 e−|t |β/γ ≤ |φZ(t)| as |t | −→ ∞, (5)

where β0 is some real constant and d0, β and γ are some strictly positive constants. Furthermore,
let φZ be integrable.

Next we need to impose conditions on the class of target densities f.

Condition 3 Define the class of target densities f as

�(α, K�) =
{
f :

∫ ∞

−∞
|φf (t)|2(1 + |t |2α) dt ≤ K�

}
, (6)

Here α and K� are some strictly positive numbers.

Smoothness conditions of this type are typical in nonparametric curve estimation problems,
cf. Tsybakov (2009, p. 25) or Meister (2009, p. 34). Some smoothness assumptions have to be
imposed on the class of target densities, because, e.g. the class of all continuous densities is
usually too large to be handled when dealing with uniform asymptotics. A possibility, different
from Condition 3, is to assume that f belongs to the class of supersmooth densities

�(α, γ, K�) =
{
f :

∫ ∞

−∞
|φf (t)|2 exp(2γ |t |α) dt ≤ K�

}
,

for some strictly positive α, γ and K�. The class �(α, γ, K�) is much smaller than the class
�(α, K�) and the estimators pngn

and fngnhn
will enjoy better convergence rates in this case than

in the case when the class of target densities is �(α, K�), cf. Butucea and Tsybakov (2008a,b)
for a similar result in the classical deconvolution problem. In order not to overstretch the length
of the paper, we decided, however, not to cover this case in the present work.

Remark 3 In the sequel, we will use the symbols � and � to compare two sequences an and bn

indexed by n, meaning respectively that an is less or equal than bn for all n, or greater or equal,
up to a universal constant that does not depend on n.

The following theorem deals with asymptotics of the estimator pngn
. Its proof, as well as the

proofs of all other results of the paper, is given in Section 3.

Theorem 1 Let a function u be such that its Fourier transform φu is symmetric, real-valued,
continuous in some neighbourhood of zero and is supported on [−1, 1]. Furthermore, let

∫ 1

−1
φu(t) dt = 2,

∣∣∣∣φu(t)

tα

∣∣∣∣ ≤ U for all t ∈ R, (7)

where the constant α is the same as in Condition 3, U is a strictly positive constant and for t = 0
the ratio φu(t)t

−α is defined by continuity at zero as the limit limt→0 φu(t)t
−α, which we assume

to exist. Then

(i) under Condition 1, by selecting gn = dn−1/(2α+2β) for some constant d > 0, we have

sup
f ∈�(α,K�),p∈[0,1)

E [(pngn
− p)2] � n−(2α+1)/(2α+2β); (8)



Journal of Nonparametric Statistics 1009

(ii) under Condition 2, by selecting gn = (4/γ )1/β(log n)−1/β, we have

sup
f ∈�(α,K�),p∈[0,1)

E [(pngn
− p)2] � (log n)−(2α+1)/β . (9)

Thus, the rate of convergence of the estimator pngn
is slower than the root-n rate for estimation

of a finite-dimensional parameter in regular parametric models. For Theorem 1(ii) this is evident,
while for Theorem 1(i) this follows from Remark 2, which entails the fact that 2α + 1 < 2α + 2β.

However, see Theorems 4 and 5, where for a practically important case of a normally distributed
Z, as well as Z with ordinary smooth distribution, by establishing the lower bounds for estimation
of p we show that the slow convergence rate is intrinsic to the deconvolution problem and is not
a quirk of our particular estimator.

Remark 4 The function u in the statement of Theorem 1 will not be a probability density, not
even a function that integrates to one, and hence by calling it a kernel we somewhat abuse the
established terminology in kernel estimation. Note that condition (7) and the assumption α > 0
in Condition 3 preclude the kernel u from being the sinc kernel. We refer to van Es et al. (2008)
for one particular example of u that produced good results in simulations. Its Fourier transform
is given by

φu(t) = 693

8
t6(1 − t2)21[−1,1](t).

Here α = 6 and U = 693/8. An explicit, but rather complicated expression for u can be found in
van Es et al. (2008).

Next we will study the asymptotic behaviour of the estimator fnhngn
of f. We select the mean

integrated square error as a criterion of its performance.
Due to technical reasons, see the proof of Theorem 2, in the ordinary smooth case it is convenient

to split the sample X1, . . . , Xn into two parts and next to base the estimator p̂ngn
on the first part

of the sample only, i.e. on X1, . . . , X	n/2
, and to redefine fnhngn
as

fnhngn
(x) = 1

2π

∫ ∞

−∞
e−itx φ̃emp(t) − p̂ngn

(1 − p̂ngn
)φZ(t)

φw(hnt) dt, (10)

where

φ̃emp(t) = 1

n − 	n/2

n∑

j	n/2
+1

eitXj .

Thus φ̃emp is based on the second half of the sample X1, . . . , Xn only. Note that E [φemp(t)] =
E [φ̃emp(t)] = φX(t). From now on, we will assume that pngn

and fnhngn
are defined in this way in

the ordinary smooth case, but will retain the old definition in the supersmooth case. Splitting the
sample does not affect the convergence rate of fnhngn

in the ordinary smooth case, but only the
constant factor in the upper bound on its mean integrated squared error. The general case without
sample splitting in principle can also be handled, but we anticipate longer and more technical
proofs, cf. the remarks at the end of the proof of Theorem 2. Since in the present work we are
only concerned with convergence rates, sample splitting does not lead to a significant loss of
generality.
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The following theorem holds.

Theorem 2 Let a kernel u satisfy the assumptions in Theorem 1. Furthermore, let a kernel w be
such that its Fourier transform is symmetric, real-valued, is supported on [−1, 1] and

φw(0) = 1, |φw(t) − 1| ≤ W |t |α for all t ∈ R,

∫ 1

−1
|φw(t)|2 dt < ∞, (11)

where W is some strictly positive constant. Moreover, let p ∈ [0, p∗], where p∗ < 1. Then

(i) under Condition 1, by selecting hn = d(n − 	n/2
)−1/(2α+2β+1) for some d > 0,

gn = d	n/2
−1/(2α+2β) and εn = (log 3n)−1, we have

sup
f ∈�(α,K�),p∈[0,p∗]

E

[∫ ∞

−∞
(fnhngn

(x) − f (x))2 dx

]
� n−2α/(2α+2β+1), (12)

where fnhngn
is defined by Equation (10).

(ii) under Condition 2, by selecting hn = gn = (4/γ )1/β(log n)−1/β and εn = (log 3n)−1, we
have

sup
f ∈�(α,K�),p∈[0,p∗]

E

[∫ ∞

−∞
(fnhngn

(x) − f (x))2 dx

]
� (log n)−2α/β, (13)

where fnhngn
is defined by Equation (3).

Remark 5 As it will become clear from the proof of this theorem, without the assumption p∗ < 1
one cannot study the asymptotics of fnhngn

uniformly in (p, f ) for p ∈ [0, p∗] and f ∈ �(α, K�).

Since p∗ is allowed to be arbitrarily close to 1, from a practical point of view p∗ < 1 is not an
important restriction. Observe that one can also study the case when p∗ = p∗

n depends on the
sample size n and p∗

n → 1 at a suitable rate.

Remark 6 The condition hn = gn in Theorem 2(ii) is imposed for simplicity of the proofs only.
In practice, the two bandwidths need not be the same, cf. van Es et al. (2008), where unequal hn

and gn are used in simulation examples. Also note that our conditions on hn and gn in Theorems
1 and 2 are of asymptotic nature. For practical suggestions on bandwidth selection for the case
when both u and w are sinc kernels, see Lee et al. (2010), where also a number of simulation
examples is given.

Remark 7 We refer to van Es et al. (2008) for one particular example of a kernel w. Any kernel
that is known to produce good results in the classical deconvolution problem can be used as a
kernel w. A relevant paper on the choice of a kernel in the context of the classical deconvolution
problems is Delaigle and Hall (2006), to which we refer for a discussion and more examples.

The upper risk bounds derived in Theorem 2 coincide with the upper risk bounds for kernel-type
estimators in the classical deconvolution problems, i.e. in the case when p is a priori known to be
zero, see Theorem 2.9 in Meister (2009). Naturally, a discussion on the optimality of convergence
rates of the estimators fnhngn

and pngn
is in order. Let f̃n denote an arbitrary estimator of f based



Journal of Nonparametric Statistics 1011

on a sample X1, . . . , Xn. Consider

R∗
n ≡ inf

f̃n

sup
f ∈�,p∈[0,p∗]

E

[∫ ∞

−∞
(f̃n(x) − f (x))2 dx

]
,

i.e. the minimax risk for estimation of f over some functional class � and the interval [0, p∗] for
p that is associated with our statistical model, cf. in Tsybakov (2009, p. 78). Note that

R∗
n ≥ inf

f̃n

sup
f ∈�,p=0

E

[∫ ∞

−∞
(f̃n(x) − f (x))2 dx

]
.

The quantity on the right-hand side coincides with the minimax risk for estimation of a density f

in the classical deconvolution problem, i.e. when p = 0 and the random variable Y has a density
f . Using this fact, by Theorem 2.14 of Meister (2009) it is easy to obtain lower bounds for R∗

n,

but first we need to formulate two addition conditions on the rate of decay of φZ at plus and minus
infinity. These two conditions correspond to the ordinary smooth and supersmooth deconvolution
problems, cf. Conditions 1 and 2.

Condition 4 Let φZ be such that

|φZ(t)| ≤ d1

1 + |t |β , |φ′
Z(t)| ≤ d1

1 + |t |β for all t ∈ R

for some strictly positive constants d1 and β.

Condition 5 Let φZ be such that

|φZ(t)| ≤ d1e−|t |β/γ , |φ′
Z(t)| ≤ d1e−|t |β/γ for all t ∈ R

for some strictly positive constants d1, β and γ.

The following result holds.

Theorem 3 Let f̃n denote any estimator of f based on a sample X1, . . . , Xn and let α ≥ 1
2 .

Suppose that K� is large enough. Then

(i) under Condition 4 we have

inf
f̃n

sup
f ∈�(α,K�),p∈[0,p∗]

E

[∫ ∞

−∞
(f̂ (x) − f (x))2 dx

]
� n−2α/(2α+2β+1); (14)

(ii) under Condition 5 the inequality

inf
f̃n

sup
f ∈�(α,K�),p∈[0,p∗]

E

[∫ ∞

−∞
(f̂ (x) − f (x))2 dx

]
� (log n)−2α/β (15)

holds.

These lower bounds are of the same order as upper bounds in Theorem 2. It then follows that
our estimator of f is rate-optimal under the combined conditions in Theorems 2 and 3. For a
discussion on the conditions in Theorem 3, see, Meister (2009, p. 35).

Derivation of the lower risk bounds for estimation of probability p appears to be more involved.
We will establish the lower bound for the case when Z follows the standard normal distribution.
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This is an important case, as the assumption of normality of measurement errors is frequently
imposed in practice. The following result holds true.

Theorem 4 Let Z have the standard normal distribution and let p̃n denote any estimator of p

based on a sample X1, . . . , Xn. Then

inf
p̃n

sup
f ∈�(α,K�),p∈[0,1)

E [(p̃n − p)2] � (log n)−(α+1/2) (16)

holds.

A consequence of this theorem and Equation (9) is that our estimator pngn
is rate-optimal in

the case when Z follows the normal distribution.
The arguments used in the proof of Theorem 4 can be easily extended to the case when the

distribution ofZ is ordinary smooth. Below we provide the corresponding statement in the ordinary
smooth case.

Theorem 5 Let the characteristic function of Z satisfy Condition 4 for β > 1
2 . Let p̃n denote

any estimator of p based on the sample X1, . . . , Xn. Then

inf
p̃n

sup
f ∈�(α,K�),p∈[0,1)

E [(p̃n − p)2] � n−(2α+1)/(2α+2β)

holds.

This theorem and Theorem 1(i) imply that under the combined conditions in Theorems 1(i)
and 5 the estimator pngn

is rate-optimal.

3. Proofs

Proof of Theorem 1 The proof uses some arguments from Fan (1991). To make the notation less
cumbersome, let supf,p ≡ supf ∈�(α,K�),p∈[0,1) . We first prove (i). We have

sup
f,p

E [(pngn
− p)2] ≤ sup

f,p

(E [pngn
] − p)2 + sup

f,p

Var [pngn
]. (17)

Observe that

|E [pngn
] − p| = 1 − p

2

∣∣∣∣
∫ 1

−1
φf

(
t

gn

)
φu(t) dt

∣∣∣∣
≤ 1

2

∫ 1

−1

∣∣∣∣φf

(
t

gn

)(
t

gn

)α∣∣∣∣ ∣∣∣(gn

t

)α

φu(t)

∣∣∣ 1[t �=0] dt

≤ 1

2

√∫ 1

−1

∣∣∣∣φf

(
t

gn

)(
t

gn

)α∣∣∣∣
2

dt

√∫ 1

−1

∣∣∣∣φu(t)

tα
gα

n

∣∣∣∣
2

1[t �=0] dt

≤ 1√
2

√
K�Ugα+1/2

n , (18)

where we used Equations (7), (6) and the Cauchy–Schwarz inequality. Therefore,

sup
f,p

(E [pngn
] − p)2 � g2α+1

n (19)
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holds. Furthermore, using independence of the random variables Xi’s,

Var [pngn
] = 1

4

g2
n

n
Var

[∫ 1/gn

−1/gn

eitX1
φu(gnt)

φZ(t)
dt

]

≤ 1

4

g2
n

n
E

[(∫ 1/gn

−1/gn

eitX1
φu(gnt)

φZ(t)
dt

)2
]

= 1

4

g2
n

n

∫ ∞

−∞

(∫ 1/gn

−1/gn

eitx φu(gnt)

φZ(t)
dt

)2

q(x) dx,

where q is the density of X1. Note that

q(x) = 1

2π

∫ ∞

−∞
e−itxφY (t)φZ(t) dt ≤ 1

2π

∫ ∞

−∞
|φZ(t)| dt < ∞,

where we used integrability of φZ. Therefore

Var [pngn
] � g2

n

n

∫ ∞

−∞

(∫ 1/gn

−1/gn

eitx φu(gnt)

φZ(t)
dt

)2

dx

= 1

2π

g2
n

n

∫ ∞

−∞

∣∣∣∣φu(gnt)

φZ(−t)

∣∣∣∣
2

dt

= 1

2π

gn

n

∫ 1

−1

∣∣∣∣ φu(t)

φZ(−t/gn)

∣∣∣∣
2

dt

by Parseval’s identity. This inequality and an argument as in Fan (1991, p. 1266) entail that

sup
f,p

Var [pngn
] � 1

ng
2β−1
n

. (20)

Formula (8) is then a consequence of Equations (17), (19), (20) and our specific choice of gn in
(i).

Now we prove (ii). Since the first term on the right-hand side of Equation (17) can be treated
as in the ordinary smooth case (in particular, Equation (19) holds), we concentrate on the second
term. Using independence of the random variables Xi’s,

Var [pngn
] = 1

4

1

n
Var

[∫ 1

−1
eitX1/gn

φu(t)

φZ(t/gn)
dt

]

≤ 1

4

1

n

(∫ 1

−1

∣∣∣∣ φu(t)

φZ(t/gn)

∣∣∣∣ dt

)2

. (21)

By the same arguments as in Fan (1991, pp. 1265–1266), one can show that∫ 1

−1

∣∣∣∣ φu(t)

φZ(t/gn)

∣∣∣∣ dt ≤
{

C ′e1/(γg
β
n ) if β0 ≥ 0,

C ′gβ0
n e1/(γg

β
n ) if β0 < 0,

(22)

where the constant C ′ does not depend on n. In either case, because of our choice of gn, the
right-hand side of Equation (22) is of order o(n1/3). This and Equation (21) imply that

sup
f,p

Var [pngn
] = o(n−1/3).

The latter together with Equations (17) and (19) and our choice of gn in (ii) proves
Equation (9). �
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Proof of Theorem 2 We use the shorthand notation supf,p ≡ supf ∈�(α,K�),p∈[0,p∗] . By Fubini’s
theorem and the standard squared bias plus variance decomposition we have

sup
f,p

E

[∫ ∞

−∞
(fnhngn

(x) − f (x))2 dx

]
≤ sup

f,p

∫ ∞

−∞
(E [fnhngn

(x)] − f (x))2 dx

+ sup
f,p

∫ ∞

−∞
Var [fnhngn

(x)] dx

= T1 + T2.

Keeping in mind the remarks surrounding Equation (10), let

f̂nhn
(x) = 1

2π

∫ ∞

−∞
e−itx φ̃emp(t)φw(hnt)

φZ(t)
dt

in the ordinary smooth case, while

f̂nhn
(x) = 1

2π

∫ ∞

−∞
e−itx φemp(t)φw(hnt)

φZ(t)
dt

in the supersmooth case. Introduce

fnhn
(x) = f̂nhn

(x)

1 − p
− p

1 − p
whn

(x), (23)

where whn
(x) = (1/hn)w(x/hn). We first study T1, i.e. the supremum of the integrated squared

bias. By the c2-inequality, it can be bounded as

T1 � sup
f,p

∫ ∞

−∞
(E [fnhn

(x)] − f (x))2 dx

+ sup
f,p

∫ ∞

−∞
(E [fnhngn

(x) − fnhn
(x)])2 dx

= T3 + T4.

By Parseval’s identity and the dominated convergence theorem

∫ ∞

−∞
(E [fnhn

(x)] − f (x))2 dx = 1

2π

∫ ∞

−∞
|φf (t)|2|φw(hnt) − 1|2 dt

= h2α
n

1

2π

∫ ∞

−∞
|t |2α|φf (t)|2 |φw(hnt) − 1|2

|hnt |2α
1[t �=0] dt

� h2α
n .

Here in the second equality, we used the fact that φw(0) = 1. The dominated convergence theorem
is applicable because of Condition 3 and Equation (11). Hence T3 � h2α

n in view of the fact that
f ∈ �(α, K�). It is also straightforward to see that in fact supf,p T3 � h2α

n . We deal with T4. By
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the c2-inequality

∫ ∞

−∞
(E [fnhngn

(x) − fnhn
(x)])2 dx �

(
E

[
p̂ngn

− p

(1 − p̂ngn
)(1 − p)

])2 ∫ ∞

−∞
(whn

(x))2 dx

+
∫ ∞

−∞

(
E

[
f̂nhn

(x)
(p̂ngn

− p)

(1 − p̂ngn
)(1 − p)

])2

dx

= T5 + T6.

Note that ∫ ∞

−∞
(whn

(x))2 dx = 1

hn

∫ ∞

−∞
(w(x))2 dx < ∞,

because by our assumptions and Parseval’s identity w is square integrable. We first consider T5.

By the Cauchy–Schwarz inequality we have

T5 ≤ 1

hn

∫ ∞

−∞
(w(u))2 duE

[
(p̂ngn

− p)2

(1 − p̂ngn
)2(1 − p)2

]
.

With our choice of the smoothing parameters hn and gn it follows from LemmaA.2 of theAppendix
that supp,f T5 � g2α

n . Now let us turn to T6. By the Cauchy–Schwarz inequality

T6 ≤ E

[
(p̂ngn

− p)2

(1 − p̂ngn
)2(1 − p)2

] ∫ ∞

−∞
E [(f̂nhn

(x))2] dx.

By Lemma A.2 of the Appendix the first term in the product in the above display is of order g2α+1
n .

The same holds true for its supremum over f and p. Hence it remains to study the second factor
in the above upper bound on T6. We have

∫ ∞

−∞
E [(f̂nhn

(x))2] dx =
∫ ∞

−∞
Var [f̂nhn

(x)] dx +
∫ ∞

−∞
(E [f̂nhn

(x)])2 dx

= T7 + T8.

Let the function Wn is defined by

Wn(x) = 1

2π

∫ 1

−1
e−itx φw(t)

φZ(t/hn)
dt.

Note that by independence of Xi’s

T7 = 1

nh2
n

∫ ∞

−∞
Var

[
Wn

(
x − X1

hn

)]
dx ≤ 1

nh2
n

∫ ∞

−∞
E

[(
Wn

(
x − X1

hn

))2
]

dx

in the supersmooth case, and

T7 ≤ 1

(n − 	n/2
)h2
n

∫ ∞

−∞
E

[(
Wn

(
x − X1

hn

))2
]

dx
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in the ordinary smooth case. Then by Fubini’s theorem

T7 ≤ 1

nh2
n

∫ ∞

−∞

∫ ∞

−∞

(
Wn

(
x − s

hn

))2

q(s) ds dx

= 1

nh2
n

∫ ∞

−∞

∫ ∞

−∞

(
Wn

(
x − s

hn

))2

dxq(s) ds

= 1

nhn

∫ ∞

−∞

∫ ∞

−∞
(Wn(x))2 dxq(s) ds

= 1

nhn

∫ 1

−1

|φw(t)|2
|φZ(t/hn)|2 dt

in the supersmooth case, and

T7 ≤ 1

(n − 	n/2
)hn

∫ 1

−1

|φw(t)|2
|φZ(t/hn)|2 dt

in the ordinary smooth case. Here we used the fact that q, being a probability density, integrates
to one, as well as Parseval’s identity. The integrals in the last equalities of the above two displayed
formulae can be analysed by exactly the same arguments as in Fan (1991, pp. 1265–1266). Thus

T7 �

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

nh
2β+1
n

if Z is ordinary smooth,

1

nhn

e2/(γ h
β
n ) if Z is supersmooth and β0 ≥ 0,

h
2β0−1
n

n
e2/(γ h

β
n ) if Z is supersmooth and β0 < 0.

(24)

The same order bounds hold for supf,p T7 as well. As a consequence, supf,p T7 → 0. Let us now
study T8. By Parseval’s identity and the fact that |φY (t)| ≤ 1, we have

T8 =
∫ ∞

−∞

(
1

2π

∫ 1/hn

−1/hn

e−itxφY (t)φw(hnt) dt

)2

dx

= 1

2π

∫ ∞

−∞
|φY (t)φw(hnt)|21[−h−1,h−1](t) dt

≤ 1

hn

1

2π

∫ 1

−1
|φw(t)|2 dt

� 1

hn

,

where the last line follows from our assumptions on w. It follows that supp,f T8 � 1/hn. Com-
bination of the above bounds on supp,f T7 and supp,f T8 entails that supf,p T6 � g2α

n , where we
also used the fact that gn � hn. Therefore T4, as well as T1, i.e. the supremum of the integrated
squared bias, is of order h2α

n . For the ordinary smooth case this gives an upper bound of order
n−2α/(2α+2β+1) on T1, while for the supersmooth case an upper bound of order (log n)−2α/β .
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Now we turn to T2, i.e. the supremum of the integrated variance. We have∫ ∞

−∞
Var [fnhngn

(x)] dx =
∫ ∞

−∞
Var [fnhngn

(x) − fnhn
(x) + fnhn

(x)] dx

�
∫ ∞

−∞
Var [fnhn

(x)] dx +
∫ ∞

−∞
Var [fnhngn

(x) − fnhn
(x)] dx

= T9 + T10,

where we used the fact that for random variables ξ and η

Var [ξ + η] ≤ 2(Var [ξ ] + Var [η]).
Since T9 up to a constant is the same as T7, cf. Equation (23), the term supf,p T9 can be bounded as
before, see Equation (24). We consider T10. Let ψn be as in Equation (A1) in the proof of Lemma
A.2 of the Appendix. Then

T10 ≤
∫ ∞

−∞
E [(fnhngn

(x) − fnhn
(x))21[|p̂ngn −p|>ψn]] dx

+
∫ ∞

−∞
E [(fnhngn

(x) − fnhn
(x))21[|p̂ngn −p|≤ψn]] dx

= T11 + T12.

By the c2-inequality

T11 � 1

hn

∫ ∞

−∞
(w(x))2 dxE

[
(p̂ngn

− p)2

(1 − p̂ngn
)2(1 − p)2

1[|p̂ngn −p|>ψn]
]

+
∫ ∞

−∞
E

[
(f̂nhn

(x))2 (p̂ngn
− p)2

(1 − p̂ngn
)2(1 − p)2

1[|p̂ngn −p|>ψn]
]

dx

= T13 + T14.

Since T13 � h−1
n ε−2

n supp,f P (|p̂ngn
− p| > ψn), which follows from the fact that

(p̂ngn
− p)2

(1 − p̂ngn
)2(1 − p)2

≤ 2(1 − εn)
2 + 2p∗2

ε2
n(1 − p∗)2

,

by Lemma A.3 of the Appendix with our conditions on hn and εn it certainly holds true that
supp,f T13 � h2α

n . As far as T14 is concerned, by Fubini’s theorem and Parseval’s identity

T14 = E

[
(p̂ngn

− p)2

(1 − p̂ngn
)2(1 − p)2

1[|p̂ngn −p|>ψn]
∫ ∞

−∞
(f̂nhn

(x))2 dx

]

= E

[
(p̂ngn

− p)2

(1 − p̂ngn
)2(1 − p)2

1[|p̂ngn −p|>ψn]
1

2π

∫ ∞

−∞
|φemp(t)φw(hnt)|2

|φZ(t)|2 dt

]

� 1

ε2
n

1

hn

∫ ∞

−∞
|φw(t)|2

|φZ(t/hn)|2 dt P(|p̂ngn
− p| > ψn).

Hence

T14 � 1

ε2
n

1

h
2β+1
n

P(|p̂ngn
− p| > ψn)
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in the ordinary smooth case, and

T14 �

⎧⎪⎪⎨
⎪⎪⎩

1

ε2
n

1
hn

e2/(γ h
β
n ) P(|p̂ngn

− p| > ψn) if β0 ≥ 0,

1

ε2
n

h
2β0−1
n e2/(γ h

β
n ) P(|p̂ngn

− p| > ψn) if β0 < 0

in the supersmooth case, cf. Fan (1991, pp. 1265–1266). Similar order bounds are true for
supp,f T14. Again by Lemma A.3 and our conditions on hn and εn, we have supp,f T14 � h2α

n .

To complete establishing an upper bound on T10, it remains to study T12. As in the case of T11,

by the c2-inequality

T12 � 1

hn

∫ ∞

−∞
(w(x))2 dxE

[
(p̂ngn

− p)2

(1 − p̂ngn
)2(1 − p)2

1[|p̂ngn −p|≤ψn]
]

+
∫ ∞

−∞
E

[
(f̂nhn

(x))2 (p̂ngn
− p)2

(1 − p̂ngn
)2(1 − p)2

1[|p̂ngn −p|≤ψn]
]

dx

holds. By Lemma A.1 of the Appendix the first term on the right-hand side is up to a constant
bounded by (1/hn)g

2α+1
n and hence is of order g2α

n . The same is true for its supremum over
p and f. As far as the second term is concerned, in the supersmooth case it is bounded by
ψ2

n

∫∞
−∞ E [(f̂nhn

(x))2] dx. It follows from the upper bounds on supp,f T7 and supp,f T8 that in the
supersmooth case we have supp,f T12 � h2α

n . As far as the ordinary smooth case is concerned,

∫ ∞

−∞
E

[
(f̂nhn

(x))2 (p̂ngn
− p)2

(1 − p̂ngn
)2(1 − p)2

1[|p̂ngn −p|≤ψn]
]

dx

=
∫ ∞

−∞
E

[
(f̂nhn

(x))2
]

dx E

[
(p̂ngn

− p)2

(1 − p̂ngn
)2(1 − p)2

1[|p̂ngn −p|≤ψn]
]

holds. This is precisely the place where we use independence between f̂nh(x) and p̂ngn
implied

by sample splitting, cf. the remarks around Equation (10). Then in this case too supp,f T12 � h2α
n .

Had not we used the sample splitting trick, in the above display we would have to apply the
Cauchy–Schwarz inequality apparently leading to rather lengthy computations.

Combination of the bounds on supp,f T11 and supp,f T12 implies that supf,p T10 � h2α
n . The

bounds on and supf,p T9 and supf,p T10 induce the bound on T2. The statement of the theorem
then follows from the bounds on T1 and T2. �

Proof of Theorem 3 The result is a straightforward consequence of Theorem 2.14 of Meister
(2009). �

Proof of Theorem 4 A general idea of the proof can be outlined as follows: we will consider two
pairs (p1, f1) and (p2, f2) (depending on n) of the parameter (p, f ) that parametrizes the density
of X, such that the probabilities p1 and p2 are separated as much as possible, while at the same
time the corresponding product densities q⊗n

1 and q⊗n
2 of observations X1, . . . , Xn are close in

the χ2-divergence and hence cannot be distinguished well using the observations X1, . . . , Xn. By
Lemma 8 of Butucea and Tsybakov (2008b) the squared distance between p1 and p2 will then
give (up to a constant that does not depend on n) the desired lower bound (16) for estimation of p.

Our construction of the two alternatives (p1, f1) and (p2, f2) is partially motivated by
the construction used in the proof of Theorem 3.5 of Chen, Delaigle, and Hall (2010). Let
λ1 = λ + δα+1/2, where λ > 0 is a fixed constant and δ ↓ 0 as n → ∞. Define p1 = e−λ1 and
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note that p1 ∈ [0, 1). Next set φg1(t) = e−|t | and observe that this is the characteristic function
corresponding to the Cauchy density g1(x) = 1/(π(1 + x2)). Finally, define

φf1(t) = 1

eλ1 − 1
(eλ1φg1 (t) − 1).

Denote by Wj the i.i.d. random variables that have the common density g1 and by Nλ1 the
random variable that has Poisson distribution with parameter λ1. Then the function φf1 will be the

characteristic function corresponding to the density f1 of the Poisson sum Y = ∑Nλ1
j=1 Wj of i.i.d.

Wj ’s conditional on the fact that the number of its summands Nλ1 > 0, see Gugushvili (2008, pp.
14–15). Note that we have an inequality

|φf1(t)| ≤ λ1eλ1

eλ1 − 1
|φg1(t)|,

cf. inequality (2.10) in Gugushvili (2008, p. 22). Keeping this inequality in mind, without loss
of generality, we can assume that K� is already such that φf1 ∈ �(α, K�/4). Otherwise, we
can always consider φg1(t) = e−α′|t | with a fixed and large enough constant α′ > 0, so that φf1 ∈
�(α, K�/4). It is not difficult to see that the fact thatα′ �= 1 will not affect seriously our subsequent
argumentation in this proof. Next define the density q1 corresponding to the pair (p1, f1) via its
characteristic function

φq1(t) = (p1 + (1 − p1)φg1(t))e
−t2/2

and remark that it has the convolution structure required for our problem.
Now we proceed to the definition of the second alternative (p2, f2). Set λ2 = λ and p2 = e−λ2 .

The fact that p2 ∈ [0, 1) follows from the fact that λ > 0. Let H be a function, such that its Fourier
transform φH is symmetric and real-valued with support on [−2, 2], φH (t) = 1 for t ∈ [−1, 1]
and φH is two times continuously differentiable. Such a function can be constructed, e.g. in the
same way as a flat-top kernel in Section 3 of McMurry and Politis (2004). Define

φg2(t) = φg1(t) + τ(t),

where the perturbation function τ is given by

τ(t) = δα+1/2

λ2
(φf1(t) − 1)φH (δt).

We claim that for all n large enough φg2 is a characteristic function, i.e. its inverse Fourier transform
g2 is a probability density. This involves showing that g2 integrates to one and is nonnegative.
The former easily follows from the fact that

∫ ∞

−∞
g2(x) dx = φg2(0) = φg1(0) = 1, (25)

since τ(0) = 0 by construction and φg1 is a characteristic function.As far as the latter is concerned,
we argue as follows: observe that g2 is real-valued, because φg2 is symmetric and real-valued.
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By the Fourier inversion argument

sup
x

|g2(x) − g1(x)| ≤ 1

2π

∫ ∞

−∞
|τ(t)| dt −→ 0

as n → ∞, by definition of τ and because δ → 0. Since g1, being the Cauchy density, is strictly
positive on the whole real line, provided n is large enough it follows that

g2(x) ≥ 0, x ∈ B, (26)

where B is a certain neighbourhood around zero. Next, we need to consider those x’s, that lie
outside this certain fixed neighbourhood of zero. We have

g2(x) = 1

2π

∫ ∞

−∞
e−itx

(
φg1(t) + δα+1/2

λ2
(φg1(t) − 1)φH (δt)

)
dt

= 1

2π

∫ ∞

−∞
e−itx

((
1 + δα+1/2

λ2

)
φg1(t) − δα+1/2

λ2
φg1(t) + δα+1/2

λ2
(φg1(t) − 1)φH (δt)

)
dt

=
(

1 + δα+1/2

λ2

)
g1(x) + δα+1/2

λ2

1

2π

∫ ∞

−∞
e−itxφg1(t)(φH (δt) − 1) dt

− δα+1/2

λ2

1

2π

∫ ∞

−∞
e−itxφH (δt) dt

= T1(x) + T2(x) + T3(x).

Both T2(x) and T3(x) are real-valued by symmetry of φg1 and φH and the fact that these Fourier
transforms are real-valued. Consequently, g2 itself is also real-valued. Since g1 is the Cauchy
density and δ > 0, the inequality

T1(x) ≥ 1

π

1

1 + x2
(27)

holds for all x ∈ R. Assuming that x �= 0 and integrating by parts, we get

T2(x) = − 1

ix

δα+1/2

λ2

1

2π

∫
R\[−δ−1,δ−1]

φg1(t)(φH (δt) − 1) de−itx

= 1

ix

δα+1/2

λ2

1

2π

∫
R\[−δ−1,δ−1]

e−itx[φg1(t)(φH (δt) − 1)]′ dt.

Applying integration by parts to the last equality one more time, we obtain that

T2(x) = 1

x2

δα+1/2

λ2

1

2π

∫
R\[−δ−1,δ−1]

e−itx[φg1(t)(φH (δt) − 1)]′′ dt,

which implies that

|T2(x)| ≤ 1

x2
Cδα+1/2

∫
R\[−δ−1,δ−1]

|[φg1(t)(φH (δt) − 1)]′′| dt,

where the constant C does not depend on x and n. Since δ → 0 and the first and the second
derivatives of φH are bounded on R, it follows that

|T2(x)| ≤ 1

x2
C ′δα+1/2

∫
t>δ−1

e−t dt,
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where the constant C ′ is independent of n and x. In particular,

|T2(x)| ≤ C ′δα+1/2 1

x2
(28)

for all n large enough. Finally, using integration by parts twice, one can also show that for x �= 0

T3(x) = 1

x2

δα+5/2

λ2

1

2π

∫ ∞

−∞
e−itxφ′′

H (δt) dt

and hence

|T3(x)| ≤ C ′′δα+3/2 1

x2
, (29)

where the constant C ′′ does not depend on n and x. Therefore, by gathering Equations (27)–(29),
we conclude for all n large enough and all x ∈ R the inequality

g2(x) = T1(x) + T2(x) + T3(x) ≥ 0

is valid. Combining this with Equation (25), we obtain that g2 is a probability density.
Now we turn to the model defined by the pair (p2, f2). Again by the argument of Gugushvili

(2008, pp. 22–23),

|φf2(t)| ≤ λ2eλ2

eλ2 − 1
|φg2(t)|.

Note that by selecting α′ in the definition of φg1(t) = e−α′|t | large enough and λ large enough,
one can arrange that f2 ∈ �(α, K�), at least for all n large enough. Without loss of generality,
we take α′ = 1. Set

φq2(t) = (p2 + (1 − p2)φg2(t))e
−t2/2.

This has the convolution structure as needed in our problem. Hence both pairs (p1, f1) and (p2, f2)

belong to the class required in the statement of the theorem and generate the required models.
It is easy to see that

|p2 − p1| � δα+1/2 (30)

as δ → 0, where � means that two sequences are asymptotically of the same order. Consequently,
by Lemma 8 of Butucea and Tsybakov (2008b) the lower bound in Equation (16) will be of order
δ2α+1, provided we can prove that nχ2(q2, q1) → 0 as n → ∞ for an appropriate δ → 0. Here,
χ2(q2, q1) is the χ2 divergence between the probability measures with densities q2 and q1, i.e.

χ2(q2, q1) =
∫ ∞

−∞
(q2(x) − q1(x))2

q1(x)
dx,

see Tsybakov (2009, p. 86).
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Note that we have

q1(x) = e−λ1ϕ(x) + (1 − e−λ1)f1 ∗ ϕ(x),

where ϕ denotes the standard normal density. Let δ1 denote the first element of the sequence
δ = δn ↓ 0. Then

f1(x) =
∞∑

n=1

g∗n
1 (x)P (Nλ1 = n|Nλ1 > 0)

≥ g1(x)P (Nλ1 = 1|Nλ1 > 0)

= g1(x)
P (Nλ1 = 1)

1 − P(Nλ1 = 0)

≥ λe−λ−δ
α+1/2
1

1 − e−λ1
g1(x),

cf. Gugushvili (2008, p. 23). It follows that for all x

q1(x) ≥ (1 − e−λ1)f1 ∗ ϕ(x) ≥ κAλe−λ−δ
α+1/2
1 g1(|x| + A) = cλg1(|x| + A) (31)

for some large enough (but fixed) constant A > 0. Here, the constant κA = ∫ A

−A
k(t) dt. The

inequalities in Equation (31) hold, because

(1 − e−λ1)f1 ∗ ϕ(x) = (1 − e−λ1)

∫ ∞

−∞
f1(x − t)ϕ(t) dt

≥ λe−λ−δ
α+1/2
1

∫ ∞

−∞
g1(x − t)ϕ(t) dt

≥ λe−λ−δ
α+1/2
1

∫ A

−A

g1(x − t)ϕ(t) dt

≥ g1(|x| + A)λe−λ−δ
α+1/2
1 κA

by positivity of g1 and k and the fact that the Cauchy density is symmetric at zero and is decreasing
on [0, ∞).

Now we will use Equation (31) to bound the χ2-divergence between the densities q2 and q1.

Write

χ2(q2, q1) =
∫ ∞

−∞
(q2(x) − q1(x))2

q1(x)
dx

=
∫ A

−A

(q2(x) − q1(x))2

q1(x)
dx +

∫
R\[−A,A]

(q2(x) − q1(x))2

q1(x)
dx

= S1 + S2.

Using Equation (31), for S1 we have

S1 ≤ 1

cλ inf |x|≤A g1(x)

∫ ∞

−∞
(q2(x) − q1(x))2 dx = cλ,g1

∫ ∞

−∞
(q2(x) − q1(x))2 dx,
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where cλ,g1 > 0 is a constant. By Parseval’s identity the asymptotic behaviour of the integral on
the right-hand side of the last equality can be studied as follows:∫ ∞

−∞
(q2(x) − q1(x))2 dx = 1

2π

∫ ∞

−∞
|φq2(t) − φq1(t)|2 dt

= 1

2π

∫
R\[−δ−1,δ−1]

e−t2 |eλ2(φg2 (t)−1) − eλ1(φg1 (t)−1)|2 dt

� 1

2π

∫
R\[−δ−1,δ−1]

e−t2 |δα+1/2(φg1(t) − 1)|2|1 − φH (δt)|2 dt.

Using this fact and boundedness of φH on the whole real line, we get that∫ ∞

−∞
(q2(x) − q1(x))2 dx � δ2α+1

∫ ∞

1/δ

e−t2
dt � δ2α+2e−1/δ2

.

Thus, by taking δ = cδ(log n)−1/2 with a constant 0 < cδ < 1 we can ensure that the right-hand
side of the above display is o(n−1) and consequently also that S1 = o(n−1).

Next we deal with S2. By Equation (31) and Parseval’s identity we have that

q1(x) ≥ cλ

π

1

1 + (|x| + A)2
.

Therefore by Parseval’s identity

S2 �
∫

R\[−δ−1,δ−1]
|[φq2(t) − φq1(t)]′|2 dt +

∫
R\[−δ−1,δ−1]

|φq2(t) − φq1(t)|2 dt.

Exactly by the same type of an argument as for S1, after some laborious but easy computations, one
can show that S2 = o(n−1), provided δ � (log n)−1/2 with a small enough constant. Consequently,
with such a choice of δ,we havenχ2(q2, q1) → 0 asn → ∞ and the theorem follows from Lemma
8 of Butucea and Tsybakov (2008b) and Equation (30). �

Proof of Theorem 5 We use the same alternatives (p1, f1) and (p2, f2) as in the proof of Theorem
4. One needs to show that the χ2-divergence between the corresponding probability densities q1

and q2 is of order O(n−1). The arguments used in the proof of Theorem 4 go through and for that
end it suffices to show that ∫ ∞

−∞
|φq1(t) − φq2(t)|2 dt = O(n−1) (32)

and that ∫ ∞

−∞
|(φq1(t) − φq2(t))

′|2 dt = O(n−1). (33)

Observe that for these two integrals to be finite, we need that β > 1
2 , cf. the argument below. We

have∫ ∞

−∞
|φq2(t) − φq1(t)|2 dt =

∫
R\[−δ−1,δ−1]

|φZ(t)|2|eλ2(φg2 (t)−1) − eλ1(φg1 (t)−1)|2 dt

�
∫

R\[−δ−1,δ−1]
|φZ(t)|2|δα+1/2(φg1(t) − 1)|2|1 − φH (δt)|2 dt.

Now change the integration variable in the last equality from t to s = δnt and use the fact that for
all s ≥ 1 and for δn small enough by assumption on φZ it holds that |φZ(s/δn)||s/δn|β ≤ d1, to



1024 S. Gugushvili et al.

conclude that the left-hand side of Equation (32) is of order δ
2α+2β
n . Selecting δn � n−1/(2α+2β) then

yields Equation (32). A similar argument works in case of Equation (33). We also remark that the
condition on φ′

Z given in the statement of the theorem is needed to treat Equation (33).Application
of Lemma 8 of Butucea and Tsybakov (2008b) as in Theorem 4 concludes the proof. �

Appendix

Lemma A.1 Let p∗ < 1 and let p̂ngn be defined by Equation (2) (with pngn defined by Equation (1)). Under the same
conditions as in Theorem 1 (i), we have

sup
f ∈�(α,K�),p∈[0,p∗]

E [(p̂ngn − p)2] � n−(2α+1)/(2α+2β),

while under conditions of Theorem 1(ii) the inequality

sup
f ∈�(α,K�),p∈[0,p∗]

E [(p̂ngn − p)2] � (log n)−(2α+1)/β

holds.

Proof of Lemma A.1 Introduce the notation supf,p ≡ supf ∈�(α,K�),p∈[0,p∗] . Let n be so large that p∗ < 1 − εn, which
is possible, because p∗ < 1 and εn ↓ 0. Then

E [(p̂ngn − p)2] ≤ E [(pngn − p)2].
This and Theorem 1 entail the desired result. �

Lemma A.2 Under the same conditions as in Theorem 1 and provided εn = (log 3n)−1, the inequality

sup
f ∈�(α,K�),p∈[0,p∗]

E

[
(p̂ngn − p)2

(1 − p̂ngn )
2(1 − p)2

]
� g2α+1

n

holds.

Proof Introduce the sequence

ψn = 100
√

K�U

{(
4

γ

)1/β

(log n)−1/β

}α+1/2

(A1)

and note that ψn = 100
√

K�Uh
α+1/2
n in the supersmooth case, i.e. in the setting of Theorem 1 (ii). The constants in the

definition of ψn are rather arbitrary, but they suffice for our purposes. Note that on the set {|p̂ngn − p| ≤ ψn} for all n

large enough the inequality

|1 − p̂ngn | ≥ 1 − p∗ − ψn

holds, because ψn → 0. We have

E

[
(p̂ngn − p)2

(1 − p̂ngn )
2(1 − p)2

]
= E

[
(p̂ngn − p)2

(1 − p̂ngn )
2(1 − p)2

1[|p̂ngn −p|≤ψn]
]

+ E

[
(p̂ngn − p)2

(1 − p̂ngn )
2(1 − p)2

1[|p̂ngn −p|>ψn]
]

� E [(p̂ngn − p)2]

+ 1

ε2
n

P (|p̂ngn − p| > ψn)

� g2α+1
n

+ 1

ε2
n

P (|p̂ngn − p| > ψn),

where in the last inequality we used Lemma A.1 and Theorem 1. It is easy to see that for all f ∈ �(α, K�) and p ∈ [0, p∗]
the constants in this chain of inequalities can be made independent of a particular f and a particular p. Then applying
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LemmaA.3 and taking supremum over f ∈ �(α, K�) and p ∈ [0, p∗] on the right-hand side of the last equality establishes
the desired result, because

sup
p,f

(
1

ε2
n

P (|p̂ngn − p| > ψn)

)
= o(g2α+1

n )

holds under our conditions on εn and gn. �

Lemma A.3 Define the sequence ψn by Equation (A1) and let εn = (log 3n)−1. Let p̂ngn be defined by Equation (2)
(with pngn defined by Equation (1)). Under the same conditions as in Theorem 1 (i) we have

sup
f ∈�(α,K�),p∈[0,p∗]

P(|p̂ngn − p| > ψn) � 1

ψng
β
n

exp(−const × ng2β
n ) + exp

(−const′ × ψ2
ng2β

n n
)
,

while under those in Theorem 1 (ii) it holds that

sup
f ∈�(α,K�),p∈[0,p∗]

P(|p̂ngn − p| > ψn) � e1/(γg
β
n )

ψn

exp
(
−const × ne−2/(γg

β
n )
)

+ exp(−const′ × ψ2
ne−2/(γg

β
n )n)

for the case when β0 ≥ 0, and

sup
f ∈�(α,K�),p∈[0,p∗]

P(|p̂ngn − p| > ψn) � g
β0
n e1/(γg

β
n )

ψn

exp(−const × ng−2β0
n e−2/(γg

β
n ))

+ exp(−const × ψ2
ng−2β0

n e−2/(γg
β
n )n)

for the case when β0 < 0. Here, const and const′ are some universal constants (not necessarily the same in all three
cases) independent of particular n, p ∈ [0, p∗] and f ∈ �(α, K�).

Proof In this proof, we continue numbering of the terms from the proof of Theorem 2, because it is the proof of Theorem
2 where this lemma finds its primary use. Observe that

P(|p̂ngn − p| > ψn) ≤ P(|E [p̂ngn ] − p| > ψn/2) + P(|p̂ngn − E [p̂ngn ]| > ψn/2)

= T15 + T16.

We have

|E [p̂ngn ] − p| ≤ |E [pngn ] − p| + |E [p̂ngn − pngn ]|
≤ |E [pngn ] − p| + |E [(1 − εn − pngn )1[pngn >1−εn]]|

+ |E [(−1 + εn − pngn )1[pngn <−1+εn]]|

≤ 1√
2

√
K�Ugα+1/2

n

+ E [|1 − εn − pngn |1[pngn >1−εn]]
+ E [| − 1 + εn − pngn |1[pngn <−1+εn]]

= T17 + T18 + T19.

We put the study of T17 aside for a while and consider the other two terms. Since T18 and T19 can be studied in the similar
manner, we consider only T18. Our goal is to show that T18 (and by extension T19) is negligible in comparison to T17. We
have

T18 ≤
(

1 + εn + 1

2

∫ 1

−1

|φu(t)|
|φZ(t/gn)| dt

)
P(pngn > 1 − εn).

The right-hand sides in both cases of the ordinary smooth or supersmooth Z are of smaller order than T17, which can be
seen by employing the arguments from Fan (1991, pp. 1265–1266) used to bound the integral on the right-hand side of
the above display and by the exponential bounds on P(pngn > 1 − εn), which we formulate separately in Lemma A.4.
With our conditions on gn these bounds imply that supp,f T18 is of lower order than T17. The same is true for supp,f T19.

As a consequence, supp,f (T18 + T19) < T17 for all n large enough. Thus T15 = 0, provided n is large enough, because
T17 < ψn/4 for all n large enough, and in fact supp,f T15 = 0 for all n large enough.
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It remains to study T16. We have

T16 ≤ P

( |p̂ngn − pngn | > ψn

4

)
+ P

( |pngn − E [p̂ngn ]| > ψn

4

)

≤ P

( |p̂ngn − pngn | > ψn

4

)
+ P

( |pngn − E [pngn ]| > ψn

8

)

+ P

( |E [pngn ] − E [p̂ngn ]| > ψn

8

)

= T20 + T21 + T22.

Notice that

T20 ≤ P

( |1 − εn − pngn |1[pngn >1−εn] > ψn

8

)

+ P

( | − 1 + εn − pngn |1[pngn <−1+εn] > ψn

8

)
.

We consider, e.g. the first term on the right-hand side. It is bounded by

8

ψn

(
1 − εn + 1

2

∫ 1

−1

|φu(t)|
|φZ(t/gn)| dt

)
P(pngn > 1 − εn).

Next, as we did above, we use the order bound on the integral on the right-hand side, cf. Fan (1991, pp. 1265–1266), and
the exponential bounds on P(pngn > 1 − εn) from Equations (A2) and (A3) from Lemma A.4 to bound the first term in
the upper bound on T20. Similar reasoning applies to the second term in the upper bound on T20. There we use Lemma
A.5. These bounds give the first term on the right-hand side of the three different formulae in the statement of the lemma.

To bound T21, we apply the exponential inequalities from Lemma A.6. The terms on the right-hand side will then give
the second terms in the three formulae on the right-hand side in the statement of the lemma.

Finally, we turn to T22. Our goal is to show that there exists n′ independent of p and f, such that for all n ≥ n′ we
have T22 = 0. It holds that

|E [pngn ] − E [p̂ngn ]| ≤ E [|pngn − 1 + εn|1[pngn >1−εn]]
+ E [|pngn + 1 − εn|1[pngn <1−εn]].

As the arguments for both terms on the right-hand side are similar, we consider only the first term. We have

E [|pngn − 1 + εn|1[pngn >1−εn]] ≤
(

1 + εn + 1

2

∫ 1

−1

|φu(t)|
|φZ(t/gn)| dt

)
P(pngn > 1 − εn).

By Lemmas A.4 and A.5 and the argument of Fan (1991, pp. 1265–1266) the right-hand side is negligible compared to
ψn and it follows that T22 is zero for all large enough n. In fact n′ can be found, such that this holds true uniformly in p

and f for all n ≥ n′. Gathering all the above bounds entails the statement of the lemma. �

Lemma A.4 Let pngn be defined by Equation (1). Under the conditions of Theorem 1 (i) we have

sup
p∈[0,p∗],f ∈�(α,K�)

P(pngn > 1 − εn) � exp
(−const × ng2β

n

)
, (A2)

while under conditions of Theorem 1 (ii) we have

sup
p∈[0,p∗],f ∈�(α,K�)

P(pngn > 1 − εn) �

⎧⎨
⎩

exp(−const × ne−2/(γg
β
n )) if β0 ≥ 0,

exp(−const × ng
−2β0
n e−2/(γg

β
n )) if β0 < 0.

(A3)

Here const is a universal constant independent of particular n, p ∈ [0, p∗] and f ∈ �(α, K�).
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Proof We have

P(pngn > 1 − εn) = P(pngn − E [pngn ] > 1 − εn − E [pngn ])
≤ P(|pngn − E [pngn ]| > 1 − εn − E [pngn ])

= P

⎛
⎝
∣∣∣∣∣∣

n∑
j=1

Un

(−Xj

gn

)
− E

⎡
⎣ n∑

j=1

Un

(−Xj

gn

)⎤⎦
∣∣∣∣∣∣ > n

(1 − εn − E [pngn ])
π

⎞
⎠ ,

where

Un(x) = 1

2π

∫ 1

−1
e−itx φu(t)

φZ(t/gn)
dt.

Under the conditions of Theorem 1 (i) we have

|Un(x)| ≤ C

2π

1

g
β
n

,

while under those of Theorem 1 (ii) the inequality

|Un(x)| ≤

⎧⎪⎪⎨
⎪⎪⎩

C′

2π
e1/(γg

β
n ) if β0 ≥ 0,

C′′

2π
g

β0
n e1/(γg

β
n ) if β0 < 0

holds. Here C, C′ and C′′ are some constants independent of n. By Equation (18) we have

|E [pngn ]| ≤ |E [pngn ] − p| + p ≤ p∗ + 1√
2

√
K�Ugα+1/2

n . (A4)

By taking n0 so large that for all n ≥ n0

p∗ + 1√
2

√
K�Ugα+1/2

n < 1 − εn (A5)

holds, one can ensure that uniformly in f and p, 1 − εn − E [pngn ] > 0 for n ≥ n0. Then by Hoeffding’s inequality, see
Lemma A.4 of Tsybakov (2009, p. 198), we obtain

P(pngn > 1 − εn) ≤ 2 exp

(
−2

(1 − εn − E [pngn ])2

C2
ng2β

n

)

for the setting of Theorem 1(i), and

P(pngn > 1 − εn) ≤

⎧⎪⎪⎨
⎪⎪⎩

2 exp

(
−2

(1 − εn − E [pngn ])2

(C′)2
ne−2/(γg

β
n )

)
if β0 ≥ 0,

2 exp

(
−2

(1 − εn − E [pngn ])2

(C′′)2
ng

−2β0
n e−2/(γg

β
n )

)
if β0 < 0

for the setting of Theorem 1(ii). Since

1 − εn − E [pngn ] ≥ 1 − εn − p∗ − 1√
2

√
K�Ugα+1/2

n > 0 (A6)

for all n large enough and uniformly in f and p, see Equation (A4), there exists a constant const independent of
n, p ∈ [0, p∗] and f ∈ �(0, K�), such that

sup
p,f

P(pngn > 1 − εn) � exp(−const × ng2β
n )

for the setting of Theorem 1(i), and

sup
p,f

P(pngn > 1 − εn) �

⎧⎨
⎩

exp(−const × ne−2/(γg
β
n )) if β0 ≥ 0,

2 exp(−const × ng
−2β0
n e−2/(γg

β
n )) if β0 < 0

for the setting of Theorem 1 (ii). This concludes the proof. �
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Lemma A.5 Let pngn be defined by Equation (1). Under the conditions of Theorem 1 (i) we have

sup
p∈[0,p∗],f ∈�(α,K�)

P(pngn < −1 + εn) � exp(−const × ng2β
n ),

while under conditions of Theorem 1 (ii) we have

sup
p∈[0,p∗],f ∈�(α,K�)

P(pngn < −1 + εn) �

⎧⎨
⎩

exp(−const × ne−2/(γg
β
n )) if β0 ≥ 0,

exp(−const × ng
−2β0
n e−2/(γg

β
n )) if β0 < 0.

Here const is a universal constant independent of particular n, p ∈ [0, p∗] and f ∈ �(α, K�).

Proof The proof is analogous to the proof of Lemma A.4 and is therefore omitted. �

Lemma A.6 Let pngn be defined by Equation (1). Under the conditions of Theorem 1 (i) we have

sup
p∈[0,p∗,f ∈�(α,K�)]

P(|pngn − E [pngn ]| > ψn/8) � exp(−const′ × ψ2
nng2β

n ), (A7)

while under conditions of Theorem 1(ii)

sup
p∈[0,p∗,f ∈�(α,K�)]

P(|pngn − E [pngn ]| > ψn/8) � exp(−const′ × ψ2
nne2/(γg

β
n )) (A8)

holds. Here const ′ is a universal constant independent of particular n, p ∈ [0, p∗] and f ∈ �(α, K�).

Proof These inequalities can be established by using Hoeffding’s inequality in the same way as the exponential bounds
on P(pngn > 1 − εn) from Lemma A.4. �
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